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And meet Brad, it is part of the beneficial oraanisms called the
PGPR: Plant Growth Promoting Rhizobacteria. They colonize the
root internally or exterunally.

WMeet Patrick, it is part of the pathogens organisims attacking
plants. They develop v the plant by usivg i+'s resources.
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How does PGPR commuvicate with plants +o +ell
them they are friends 7 (5, ¢, 7]

wtracellular PGPR

Secretion of flavonoids
by the plant induces

three different
respovses o\ the
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Now, we're goivg to talk about how plants and PGFR commuvicate and specifically how
PGEFR « tell » to plauts they are friends.
First, we veed a little reminder on PGPR becanse they can be divided into 2 categories :
- extracellular PGTPR : they stay v the rhizosphere
- ntracellular PGPR : they enter into the plant and stay in the spaces between the
cells of the root, or stay in specialized structures as vodules.
For the vext part, we'll focus on the example of Rhizobium, a symbiotic ntracellular
PGPR that can fix N, when it is v the plant.

When PGPR are <till v the rhizosphere, they are influenced by the root exudates, especially
the flavowoids. Tw fact, the secretion of flavonoids induces three different responses in the
PGPR :

* The first pathway is dependent +o the Nod factors (NF) : the flavonoids induce the
transcription of rhizobia NF that produce lipo-chitoolinosaccharides also called LCO.

* The second pathway is NF-independent but dow'+ exist for all PGFPR (ow the contrary,
the NF-dependent pathway exists for all PGPR). This pathway is called rhizobia type
TITT secretion systems (T3SS) aud allows, thanks to T3SS protein, to travsport
effectors proteins called Nops into the rhizosphere.

* Tw respouse to flavonoids, the PGFR release polysacharides as EPS aud LPS.

After all the rhizobacteria wmolecules interact with +he root cell, a cascade of
sionaling events and reactions occurs nto the plant and lead to the suppression
of +he plant’s immune system with the root cell. This suppression allow the
entry and the iufection of a rhizobacteria thread, which allow the
establishment of the symbiosis in the root cell.

For Rhizobiam, i+t leads +o the creation of nodules in the root cell, in which the
PGPR will settle. (5. 6, 7]



How PGFPR is involved in ISR,....

‘ Elicitation |

by plavt :

when Brad
meet plant

\\\\\\

\_

/ Brad produce elicitors that are P@roci\/@d\ /

LPS, flagelln, VOCs, Antibiotics, PAPE,
pyocyanin, LPP, Siderophores (9]
Like a good Romeo i+ wants to please
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Activation of the plavt’'s immune system

after elicitor perception at cellular level
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PR protein .

Let’s take the example of the ‘ J#A sigualling
PGTR Paenibacillus straiv B2 Depewding on > Phewylpropanoids
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[ Limits of the effiiciency of PGFR-based products ]
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How we would create our * Ligand and

@ solution

* Protection from evvironment 2

: ‘ conditions and competition with
growing media other microorganisims
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Carrier
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Brad fertilizer) (12]

- Origin of the starch (potato, cassava,
maize) -> pore size [1A]

- Carrier: peat/coir, conditionned cerals [2.0]

- Coucentration of spores in the carrier

- Number of lavers -> longer/best effect

Dearedation by wicroorgavism or water



How would we chavnge bioformulation [ application?

We based the conception of our product on the example of control release fertilizers and notably polymer coated fertilizers (PCF's). PCF's
are like solid gravules, with a wutrient core which is coated with a polymer,

Followivgy this example, we choose to make a product based ov sporulated form of PGPR, which is an inactive form, that we think would
be better for storage and product shell-life.

The wactive PGFR would be placed on a sterilized carrier (for example : peat, coconnt fiber..) to avoid contamivation with other
microorganisims. Usually a carrier is the growing media or abiotic substrate on which bacterial isolates are placed during all +he
formulation process. Here, the carrier is vot really a growing media v itself during the formulation process becanse we want the PGPR
to stay in sporulated form (therefore its uses during the formulation process is +o be a ligand). Tw field whew the product is applied, by
the action of water avd/or wicrooraanisims, it's whew the carrier will help to start the growth of PGPR population.

Then, we choose +o coat the mix PGPR/carrier with a polymer that would be stareh, aeverally used for PCPT's. (18,10, 20]



How would we chavnge bioformulation [ application?

Tw order to have a slow release of the PGPR in field and therefore a lovg term effect
of the product, we choose to make several layers of the pair “core x coat”,

Iw field, the starch coating could be degraded either by water or soil wicroorgavisims.
Furthermore, it is water that will help the PGPR become active again by activating

the spore germination,

But we'll need experiments +o be sure of the form of our fival product
and to be certain of its efficiency.
we'll make experiments to kvwow :

What should be the coat thickwess? wWe know for urea polymer coated
fertilizers that the thickwess of the coat is between 50 and GO pm.
which starch should we use? Should i+ be a starch coming from
potato, cassava, or maize? Twdeed, dependivg of its origin, the pores
of the starch coating won't have the same size and structure.

Which carrier would be +he best?

The usual concentration is 102 cells/ay (or 10° UFC/g) but which
optimal spore concentration should be used?  UFC = Unit Forming Colony
How many layers would be required o have the best longer effect?
2,2 or 5 lavyers 7

Would there be interaction between the PGPR and the
coating whew germination occurs? Would i+ be a problem?
How can we determine | experiment on the release? How
can we weasure the release period? How longy wounld be
durability and longevity v field?

- For which environmewntal conditions and host plant our product would be +he wost efficient? (19,14, 20]



How would we chavge Vioformulation [ application?

From sowing to any growth stage

why is our product relevant:

s

\

Tts size will be compatible with seeding equipment.

I+ cav be applied at sowing period but also at any time v the plant growth stage 2 it can be buried v the soll as seeds or it can be
put on the surface.

T+ could replace several applications of foliar spray and avoids +he inevitable losses (run-off, leaching) becanse directly at the contact
with the soil and close to the root system of plants = one application during sowing and maybe another application during another
stage growth should be evoughh for a aood establishment of PGPR in soil.

Release of PGPR is continons throuah time, one application can ensure several months = there are always PGFR near the plawnt.
Potential lowg storage and shell-life of the product, at least ove or two years.

(19,19, 20]
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